Calculus is Hard ! - or is it ?

the MATHeCADEMY.net Channel

Deconstruction

discovers alternatives to <u>choices</u> presented as nature

Root of Calculus: Adding PerNumbers

3 kg at 4 \$/kg + 5 kg at 6 \$/kg 8 kg at ? \$/kg

Areas add PerNumbers

Differentiation: Reversed Integration

Changing PerNumbers

3 sec. at 4 m/s increasing to 5 m/s = ? m

Defining Constancy

y is <u>GLOBALLY</u> constant = c

ForAll d: distance(y,c) < d

y is <u>PIECEWISE</u> constant = c

Exists e, ForAll d: distance(y,c) < d within e

y is <u>LOCALLY</u> constant = c

ForAll d, Exists e: distance(y,c) < d within e

Σ many changes = 1 change

У	ΔΥ	ΣΔγ	$\Delta y = y_e - y_s$
Level	Single Change	Sum of Changes	Total Change
ys			
y1	y1 – ys	y1 – ys	y1 – y s
y2	y2 - y1	(y2 - y1) + (y1 - ys)	y2 – ys
у3	y3 – y2	(y3 - y2) + (y2 - ys)	y3 — ys
ye	ye – y3	(ye - y3) + (y3 - ys)	ye – ys

 $\int dy = \sum_{\Delta} y = \Delta y = y_{end} - y_{start}$

In y = x^2, an x-change dx gives a y-change dy = 2^*x^*dx So the area A under h from x = 1 to x = 5 is A = $\int h^*dx = \int 2^*x^*dx = \int dy = y5 - y1$ = $5^2 - 1^2$ = 24

The Change of a Rectangle

The Change of x² and x³

If y = xthen $\mathbf{y'} = d\mathbf{y}/d\mathbf{x} = d\mathbf{x}/d\mathbf{x} = \mathbf{1}$ If $y = x^2 = x^*x$ then $y' = (x^2)' = (x^*x)' = x'^*x + x^*x' = 1^*x + x^*1 = 2x$ If $y = x^3 = x^{2*}x$ then $\mathbf{y'} = (x^3)' = (x^{2*}x)' = x^{2'*}x + x^{2*}x' = 2x^*x + x^{2*}1 = 3x^2$ Since $(f^*g)' = f'^*g + f^*g'$

Differential Equation

Find the area under $y = x^2$ from x = 1 to 4

The change of the area A: $dA = y^*dx$, or $A' = dA/dx = y = x^2$, A(1)= 0

Solution: $A = 1/3*x^3 + c$ $0 = 1/3*1^3 + c$, c = -1/3So $A(4) = 1/3*4^3 - 1/3 = 21$

Applying Calculus

Physics

Velocity: 3 sec at 4 m/s + 5 sec at 6 m/s = ? Acceleration = Velocity' = Position "

Economics

Price: 3 kg at 4 \$/kg + 5 kg at 6 \$/kg = ? Rate of change: dy/dx = y'Relative r. of c.: (dy/y)/dx = y'/yRelative r. of rel. c.: (dy/y)/(dx/x) = y'/y*x

Newton: No, No, No & No

No, the moon moves not among the stars, it falls towards the earth, as does the apple.

- **No**, they follow not the Lord's unpredictable will, they follow a formula's predictable will, a force.
- **No**, forces give not motion, but change in motion.
- **No**, algebra solves not change-equations, calculus must be invented to do so.

Four Ways to Add Many

Adding	Variable	Constant
Unit-	3 \$ and 5 \$	3 \$ 5 times
numbers	T = 3 + 5	T = 3*5
Per-	3 sec. of y m/s	3 % 5 times
numbers	T = ∫ y dx	T = 103%^5 - 100%

Adding NextTo Q: 2 3s + 3 4s = ? 7s

A: 2 3s + 3 4s = 2.4 7s

A: ? = (2 6 s - 1 4 s)/2 = 4 differentiation

Conclusion

Deconstruction discovers an alternative: Calculus means adding per-numbers

Calculus becomes easy if built upon

- mixing quantities in middle school
- adding next-to in primary school

PreSchool Math is Hard ! - or is it ?

the MATHeCADEMY.net Channel

Defining Linearity

y is <u>GLOBALLY</u> linear:

the per-number y' = dy/dx is <u>globally</u> constant

y is <u>PIECEWISE</u> linear: the per-number y' = dy/dx is <u>piecewise</u> constant

y is <u>LOCALLY</u> linear:

the per-number y' = dy/dx is <u>locally</u> constant

PreSchool Math Golden learning chances Linearity: Shift units

Integration: Add nextTo Equations: Reverse addition